

Summer Conference Results from CMS: a look at a selected set of analyses

Ricardo Eusebi

Mitchell Institute for Fundamental Physics and Astronomy Department of Physics and Astronomy Texas A&M University

on behalf of the CMS collaboration

Joint Experimental-Theoretical Physics Seminar, August 12th, 2016

C.E.R.N. and the LHC

Large number of H.E.P. projects

- Astrophysics
- Dark Matter searches
- Collider

Large Hadron Collider

- Proton-proton collider, radius = 4.3 Km.
- Two multi-purpose detectors: CMS & ATLAS.
- Plus other specialized detectors:
 ALICE, LHCb, TOTEM, MoEDAL and LHCf

CMS Detector

CMS Collaboration: 180 institutions, 43 countries

> 1789 physicists > 891 Ph.D students > 859 engineers > 281 technicians

CMS Data is pouring in...

Where we left of ...

LHCP 2016, June 13th, 2016. Lund, Sweden.

- Presented an array of new analyses based on 2.3-2.7 fb⁻¹ at 13 TeV.
 - Standard XS measurements: Ttbar, W, Z, WZ, ZZ, etc
 - Higgs searches to di-photon, multi-leptons and invisible
 - Sparticle searches
 - Searches for exotic Z' and $X_{5/3}$ particles.

Where we left of ...

LHCP 2016, June 13th, 2016. Lund, Sweden.

CMS PAS EXO-16-018

- Analysis on $X(750) \rightarrow \gamma \gamma$ excess remained strong.
 - Added 0 B-field data → sensitivity increased 10%,
 - Local 2.8 sigma @13 TeV.
 - Adding 8 TeV data > local sig. to 3.4 sigma, global to 1.6 sigma

Plethora of new CMS results with 13 fb⁻¹ at 13 TeV.

Just new for ICHEP 2016, more than 70 new results!!

In this talk

- Resonances
 - Di-Jet
 - Di-Photon
 - Di-Lepton
- > Higgs
 - Rediscovery
 - Properties

- Dark-Matter searches
 - Mono-Jet and Mono-V
 - DM summary

- > SUSY
 - All-Hadronic
 - Combination with Leptons
- Can't cover all new analyses → "crazily selective"
- I will focus on results not on methodology
- Devil is in the details. Check all of them from CMS public page:
 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

Resonances

Some new resonance analyses for ICHEP 2016

EXO-16-015	Search for excited quarks in the γ +jet final state in pp collisions at \sqrt{s} = 13 TeV
EXO-16-009	Search for excited leptons in llgamma final state at 13 TeV
EXO-16-025	Search for high-mass resonances in Z(qq)gamma final state at 8 TeV
EXO-16-027	Search for high-mass resonances in diphoton final state using 2016 data
EXO-16-031	Search for high-mass resonances in dilepton final state with 2016 data
EXO-16-032	Search for high-mass resonances in dijet final state with 2016 data
EXO-16-034	Search for high-mass resonances in Z(II)gamma final states with 2016 data
EXO-16-035	Search for high-mass resonances in Z(qq)gamma final state with 2016 data

- Predicted by BSM models: axigluons, colorons, scalar diquarks, W' and Z' bosons, excited quarks, color-octet scalars, string resonances, RS, etc.
- early-detection signatures for new physics

Typical dijet lineshape:

- Gaussian cores from detector resolution
- Tails primarily from QCD radiation.
- Consider three final states

qq, qg, gg

Dedicated low- and high-mass channels.

Great baseline fits for SM background

> For most of the favorite models...

Dijet resonances: Limits

> For most of the favorite models...

		Observed (expected) mass limit [TeV]		
Model	Final	$12.9{\rm fb}^{-1}$	$2.4{\rm fb}^{-1}$	$20 { m fb}^{-1}$
	State	13 TeV	13 TeV	8 TeV
String	qg	7.4 (7.4)	7.0 (6.9)	5.0 (4.9)
Scalar diquark	qq	6.9 (6.8)	6.0 (6.1)	4.7(4.4)
Axigluon/coloron	$q\overline{q}$	5.5 (5.6)	5.1 (5.1)	3.7 (3.9)
Excited quark	qg	5.4 (5.4)	5.0 (4.8)	3.5 (3.7)
Color-octet scalar ($k_s^2 = 1/2$)	gg	3.0 (3.3)		
W'	$q\overline{q}$	2.7 (3.1)	2.6 (2.3)	2.2 (2.2)
Z'	$q\overline{q}$	2.1 (2.3)		1.7 (1.8)
RS Graviton	qq, gg	1.9 (1.8)		1.6 (1.3)

Increase in all limits due to larger statistics Excluding string resonances up to 7.4 TeV

Dijet resonances: highest dijet invariant mass.

Di-photon resonances

CMS PAS EXO-16-027

Central-Endcap

Di-photon resonance

Di-photon: at 750 GeV

What is seen now

CMS PAS EXO-16-027

What we would have seen

"...just to mess with phenomenologists..."

Dilepton Resonance

- Very clean signature
 - high signal efficiencies and small well-understood backgrounds.

- GUT Theories
 - Fundamental interactions have common root?
 - Maybe strong and electroweak interactions are described by one, larger, gauge group at E > E_{GUT}.
 - At E<E_{GUT} the group breaks into SM groups.
 - Many of these models predict, at TeV scale, additional neutral gauge bosons, interacting similarly to the Z⁰

Separate by flavor: ee and μμ

Agreement over 6 orders of magnitude!!

Separating by flavor: ee and μμ

Exclude M_{Z} , up to 3.65 TeV

Exclude M_{Z} , up to 3.75 TeV

Limits valid for narrow resonances (Γ ~0.02m_X), assume on-shell cross sections and do not include interference effects

Higgs

Some new Higgs analyses for ICHEP 2016

HIG-16-019	Search for $H \rightarrow bb^-$ in association with a single top quark as a test of Higgs boson couplings at $sV = 13$ TeV
HIG-16-020	Higgs to gammagamma measurements at 13 TeV using 2016 data
HIG-16-022	Search for the ttH process with multilepton decays using the 2016 data
HIG-16-023	Search for high mass Higgs to WW with fully leptonic decays using 2015 data
HIG-16-024	Search for the nonresonant HH process with WWbb decays using 2015 data
HIG-16-025	Search for a heavy Higgs boson decaying to bottom quark pairs in the 13 TeV data sample
HIG-16-027	Search for charged Higgs bosons in WZ decays at 13 TeV
HIG-16-028	Search for H(bb)H(tautau) decays from non-resonant production
HIG-16-029 HIG-16-033	Search for H(bb)H(tautau) decays from resonant production Higgs to four leptons measurements at 13 TeV with 2016 data

Higgs "Rediscovery"

>H->yy

CMS HIG-16-020

>H→ZZ→4 leptons

CMS HIG-16-033

Signal clear to the naked eye

Higgs "Rediscovery"

>H->yy

CMS HIG-16-020

>H→ZZ→4 leptons

CMS HIG-16-033

Well beyond 5 sigma in each independent channel.

Higgs properties from $H \rightarrow ZZ \rightarrow 4$ leptons

Channel well suited for understanding Higgs properties:

CMS HIG-16-033

- Large signal to background ratio channel
- Complete reconstruction of final state decay products
- Excellent lepton momentum resolution

In a nutshell:

- Form Z candidate from leptons:
 - same flavor, opposite charge, within some Z window.
- \triangleright Combine into ZZ : 4e, 4 μ , 2e2 μ
 - Place several safety requirements on Z candidates and ZZ events (e.g, m_{II}>4 for all lepton combinations)
- Separate in 6 exclusive "categories":
 - \rightarrow Total of $18 = 3 \times 6$ bins.

Higgs properties from $H \rightarrow ZZ \rightarrow 4$ lep: XS

CMS HIG-16-033

Cross section compatible with SM. No tension in signal strength between all channels.

Higgs properties from $H \rightarrow ZZ \rightarrow 4$ lep: Mass

CMS HIG-16-033

$$m_{\rm H} = 124.50^{+0.48}_{-0.46} \,\,{\rm GeV}$$

Higgs properties from $H \rightarrow ZZ \rightarrow 4$ lep: Width

- Measured cross sections can be kept fixed if one simultaneously rescales couplings of the Higgs boson to SM particles and the Higgs boson width by appropriate factors.
- In the peak region we measure cross section

$$\sigma_{i o H o f} \sim rac{g_i^2 g_f^2}{\Gamma_H}$$
 remains the same with simultaneous rescaling of product of couplings^2 and width.

- Production of <u>off-shell Higgs</u>' is independent of the width and changes proportionally to rescaling of the product of couplings^2
- Use this to measure absolute width.

Higgs properties from $H \rightarrow ZZ \rightarrow 4$ lep: Width

Width of Higgs constrained to be less than 41 MeV at 95% CL. (compared to 3.9 GeV is considering only on-shell production)

CMS HIG-16-033

Dark Matter Searches

Some new Dark Matter analyses for ICHEP 2016

EXO-16-005	Search for dark matter in association with a top quark pair at $sV=13$ TeV
EXO-16-010	Search for dark matter and unparticles in events with a Z boson and missing transverse momentum in proton-proton collisions at $sV = 13$ TeV
EXO-16-011	Search for dark matter produced in association with a Higgs boson decaying to
	two photons
EXO-16-022	Search for displaced leptons at 13 TeV (e-mu channel)
EXO-16-037	Search for dark matter in jets+MET final state with 2016 data
EXO-16-038	Search for dark matter in Z(II) MET final state using the 2016 dataset
EXO-16-039	Search for dark matter in photon+MET final state with 2016 data
EXO-16-040	Search for dark matter in top+MET final state with 2016 data
EXO-16-043	Search for pair production of first generation leptoquarks

August 12th, 2016 Ricardo Eusebi - W&C Seminar 32

Dark Matter

- No experimental evidence of Dark Matter non-gravitational interaction with SM particles.
 - If DM and SM particles interact, then DM can be produced in proton-proton collisions
- In many models, DM interact via mediators:

Scalar Mediator

Vector Mediator

Striking signature of a single object with large momentum imbalance "Mono-X" searches, where X=jet, photon, lepton, W, Z,

Search in the MET distribution for Mono-Jet and Mono-W/Z

Use this to place limits on models

Limits on plane of mass-DM vs mass-mediator. For Vector mediator exclude m_{med} <1.95 TeV and m_{DM} <770 GeV

Dark Matter: Summary

SUSY searches

Some new SUSY analyses for ICHEP 2016

SUS-16-012 SUS-16-013	Search for SUSY in Events with a Higgs Decaying to Two Photons Using the Razor Variables Search for RPV SUSY in 0l and 1l final states
SUS-16-014	Search for supersymmetry in the multijet and missing transverse momentum channel in pp collisions at 13 TeV (RA2/b)
SUS-16-015	Search for new physics in the all-hadronic final state with the MT2 variable (MT2)
SUS-16-016	Search for new physics in final states with jets and missing transverse momentum in sqrt(s) = 13 TeV pp collisions with the alpha_T variable (AlphaT)
SUS-16-019	Search for supersymmetry in events with one lepton (1l dphi)
SUS-16-020	Search for SUSY in same-sign dilepton events at 13 TeV (SS2I)
SUS-16-021	Search for SUSY in final states with opposite-sign dileptons at 13 TeV (OS2I, strong + ewk production)
SUS-16-022	Search for SUSY with multileptons in 13 TeV data (RA7)
SUS-16-023	Search for SUSY in photon + MET final states at 13 TeV
SUS-16-024	Search for electroweak SUSY production in multi-lepton final state at 13 TeV
SUS-16-025	Search for SUSY in the soft opposite-sign dilepton final state at 13 TeV (SOS)
SUS-16-026	Search for electroweak SUSY in the WH final state at 13 TeV
SUS-16-028	Search for direct top squark pair production in the single lepton final state at s√= 13 TeV
SUS-16-029	Search for direct stop pair production in the fully hadronic final state at 13 TeV
SUS-16-030	Search for SUSY with a customized top tagger at 13 TeV

SUSY is around the corner

• Which one?

Targeted aim requires a bit of luck, broader searches not so much.

All hadronic search targeting several models

Models produce different signatures:

- Number of Jets
- Number of b-jets
- Missing Transverse Jet Momenta, MH_T
- Scalar sum of jet transverse momenta, H_T

Strategy in a nutshell

- Veto both isolated e or mu, and isolated tracks
- Require minimal $\Delta\Phi(MH_T, jets)$ avoid MHT from mis-measured jets
- Split signal region into bins
 - 4 Njets bins:
 [3-4,5-6,7-8,≥9]
 - 4 Nb-jets bins:
 [0,1,2, ≥3]
 - In each (Njet, Nbjet) bin define 10 further different signal regions!

A total of **160** signal bins !!!

Backgrounds grouped by features

 $>Z\rightarrow vv$

➤ Lost lepton

➤ Hadronic-tau lepton

>QCD

ğ (a)

Example sensitivity to T1bbbb

Other specific regions sensitive to:

Great sensitivity to many different scenarios

Example exclusion results

95% CL upper limit in XS @ (1000,400) = 0.02 pb

We can exclude at 95% C.L. production wherever expected cross section is larger than upper limit.

At (1000,400) production is ~0.006 pb so we can't exclude that point.

Reminding Results

SUSY: Combining with leptons

Summary

- Fantastic show of CMS results at ICHEP 2016
 - More than 70 new results enabled by the successful operation of the LHC and CMS detector.
- Broad scan of physics beyond the SM.
 - More data help achieved new levels of sensitivity
 - Great increase in reach of BSM
- No significant deviation from the SM...just yet...
- CMS is collecting data like crazy
 - As of today have 20 fb⁻¹, expect ~26 fb⁻¹on 2016.

Stay tuned for the next set of results from the LHC

August 12th, 2016 Ricardo Eusebi - W&C Seminar 47

Thank you

Backup

In 2015 LHC went from √s= 8 TeV to 13 TeV ...

